李琼玲 特聘研究员 南开大学陈省身数学研究所 |
共两门课程,每天上下午各一门课,每次课程两小时(含课间休息),加习题答疑。每门课程14学时。
时间:2024.07.28--08.03
地点:南开大学 陈省身数学研究所(省身楼)
主讲人: 苏伟旭(中山大学)
课程介绍:主要围绕黎曼面上的全纯二次微分,介绍Teichmüller空间的构造及其复几何;介绍全纯二次微分的轨线结构和分解定理;介绍Teichmüller测地流在全纯二次微分研究中的应用;介绍全纯二次微分和调和映照的联系。
参考文献:
[1] Hubbard. Teichmüller theory and applications to geometry, topology, and dynamics. Matrix Editions, 2016.
[2] Kerckhoff, Masur, Smillie. Ergodicity of billiard flows and quadratic differentials. Annals of Mathematics, 1986, 124(2): 293-311.
[3] Strebel. Quadratic differentials. Springer Berlin Heidelberg, 1984.
[4] Wolf. The Teichmüller theory of harmonic maps. Journal of differential geometry, 1989, 29(2): 449-479.
主讲人简介:苏伟旭,中山大学教授。苏伟旭2011年在中山大学获得博士学位,之后在复旦大学工作,2022年8月至今在中山大学工作。他的研究领域是Teichmüller空间理论,部分成果发表在Math Ann., Adv. Math. 等著名期刊。
主讲人:杨田(Texas A&M University)
课程介绍:In this series of lectures, I will introduce several quantum invariants of knots/links and 3-manifolds, and their relationship with hyperbolic geometry. In particular, I will talk about the Jones and colored Jones polynomials of knots and links in the 3-sphere, and the Reshetikin-Turaev and the Turaev-Viro invariants of 3-manifolds. The Volume Conjectures for these invariants will also be discussed.
参考文献:
[1] C. Blanchet, N. Habegger, G. Masbaum and, P. Vogel, Three-manifold invariants derived from the Kauffman bracket. Topology 31 (1992), no. 4, 685–699.
[2] W. B. R. Lickorish, The skein method for three-manifold invariants. J. Knot Theory Ramifications 2 (1993), no. 2, 171–194.
[3] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and theirinvariants derived from quantum groups. Comm. Math. Phys. 127 (1990), no. 1, 1–26.
[4] N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), no. 3, 547–597.
[5] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j -symbols. Topology 31 (1992), no. 4, 865–902.
[6] Q. Chen and T. Yang, Volume conjectures for the Reshetikhin–Turaev and the Turaev– Viro invariants. Quantum Topol. 9 (2018), no. 3, 419–460.
主讲人简介:杨田,美国德克萨斯农工大学副教授,博士毕业于罗格斯大学,并曾在斯坦福大学担任博士后。他主要专注于几何拓扑和量子拓扑的理论研究,研究成果发表于Journal of Differential Geometry, Geometry & Topology,Communications in Mathematical Physics, Advances in Mathematics 等一系列国际高水平杂志上。
保证全程有精力,有时间,有兴趣参加课程的高年级本科生或相关Teichmüller理论和几何拓扑方向的研究生。
本次暑期学校将提供校内住宿和部分餐饮。总计接收22人左右。报名发信至liqlnankai@gmail.com,主题为学校+姓名+暑期课程。本科生提供CV,成绩(无需盖章)和参加该课程原因的详细陈述。研究生提供CV, 研究生阶段的项目简要介绍或是由导师发送推荐信或联系。
报名截止时间:2024.05.05 23:59 (5月9日前会通知被录取学生,过时未收到邮件则代表没有被录取)